654/Math. 22-23 / 52112

B.Sc. Semester-V Examination, 2022-23 MATHEMATICS [Honours]

Course ID: 52112 Course Code: SH/MTH/502/C-12 Course Title: Group Theory-II

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

- Answer any **five** questions: $2 \times 5 = 10$
 - a) If ϕ be an automorphism of a group G, then prove that $H = \{x \in G : \phi(x) = x\}$ is a subgroup of G.
 - b) Show that if a group G is abelian, then $Inn(G) = \{e\}$.
 - c) Show that $\mathbb{Z}_2 \times \mathbb{Z}_3$ is isomorphic to \mathbb{Z}_6 .
 - d) Find all the abelian groups of order 1125.
 - e) Find the class equation of the group D_3 .
 - f) Find the number of subgroups of order 25 in a group of order 75.

[Turn Over]

- g) Let G be a group that has only two conjugate classes. Then prove that the order of G is 2.
- h) Let H and K be two subgroups of a group G. Then prove that $N_k(H)$ is a subgroup of K, where $N_k(H)$ is the normalizer of H in K.
- 2. Answer any **four** questions: $5 \times 4 = 20$
 - a) Define characteristic subgroup and prove that the centre of a group is characteristic. 1+4
 - b) Show that the mapping $\phi(a+ib) = a-bi$ is an automorphism of the group of complex numbers under addition.
 - c) Let H and K be two subgroups of a group G such that $G = H \times K$. Then prove that G/K is isomorphic to H and G/H is isomorphic to K.
 - d) Can the cyclic group Z_{12} be expressed as the internal direct product of two proper subgroups? Justify.
 - e) i) If H and K are conjugate, then prove that $H \cong K$.
 - ii) If a group G has only one p-Sylow subgroup H, then show that H is normal in G.

3+2

f) i) If G is a group of order 48, then show that the intersection of any two distinct Sylow 2-subgroup of G has order 8.

(2)

654/Math.

- ii) How many Sylow 5-subgroups of S_5 are there? Justify your answer. 3+2
- 3. Answer any **one** question: $10 \times 1 = 10$
 - a) i) If G is infinite cyclic group, then find Aut(G).
 - ii) Prove Cauchy's theorem for a non-abelian group.
 - iii) If G is a group and G' be its commutator subgroup of G, then prove that the subgroup G' is normal in G. 4+4+2
 - b) i) Prove that $|Aut \mathbb{Z}_2 \times \mathbb{Z}_2| = 6$.
 - ii) How many elements of order 9 does $\mathbb{Z}_3 \times \mathbb{Z}_9$ have?
 - iii) Using Sylow's theorems, show that any group of order 175 is simple. 4+3+3
